Chapter

7

METAL-SEMICONDUCTOR JUNCTIONS

Metal-semiconductor junctions are a critical component of microelectronics. The following figures provide an overview of Schottky barrier diodes, ohmic contacts, and interconnect delay issues.

Band profile of a metal and semiconductor junction

© Prof. Jasprit Singh

SCHOTTKY JUNCTION ON A *P*-TYPE SEMICONDUCTOR

© Prof. Jasprit Singh

SCHOTTKY JUNCTION IN REAL SYSTEMS

Schottky barrier heights are determined by the semiconductor and have a rather weak dependence on the metal.

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

CURRENT FLOW IN A SCHOTTKY DIODE

• Metal-to-semiconductor barrier is unchanged by external bias

• Semiconductor-to-metal barrier is increased (reverse bias) or decreased (forward bias) by an external bias.

© Prof. Jasprit Singh

Small signal model of a Schottky diode

The Schottky diode is a majority carrier device. Unlike a p-n diode, in forward bias no minority carrier injection occurs. Thus there is no diffusion capacitance and the device response can be very fast.

Depletion capacitance:

$$C_d = A \left[\frac{eN_d\varepsilon}{2(V_{bi}-V)}\right]^{1/2}$$

Diode resistance:

$$R_d = \frac{dV}{dI} = \frac{eI}{k_B T}$$

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

A comparison between the properties of a P-N and a SCHOTTKY DIODE

<i>p-n</i> DIODE	SCHOTTKY DIODE
Reverse current due to minority carriers diffusing to the depletion layer \longrightarrow strong temperature dependence	Reverse current due to majority carriers that overcome the barrier \rightarrow less temperature dependence
Forward current due to minority carrier injection from <i>n</i> - and <i>p</i> -sides	Forward current due to majority injection from the semiconductor
Forward bias needed to make the device conducting (the cut-in	The cut-in voltage is quite small
voltage) is large	
Switching speed controlled by recombination (elimination) of minority injected carriers	Switching speed controlled by thermalization of "hot" injected electrons across the barrier ~ few picoseconds
Ideality factor in I-V characteristics ~ 1.2-2.0 due to recombination in depletion region	Essentially no recombination in depletion region \longrightarrow ideality factor ~ 1.0

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

$\begin{array}{c} \text{Metal-semiconductor junctions: ohmic contact and} \\ \text{Schottky junction} \end{array}$

INTERCONNECT DELAY: GOING FROM AL TO CU

As device dimensions shrink interconnect cross-sections also must shrink. This increases the interconnect resistance and the associated time delay for signal propagation.

Based on Semiconductor Industry Associates Roadmap.